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Abstract—Aryl substituted oxazolinyloxiranes 1a–g have been found to undergo smooth isomerization into oxazolinyl substituted
aryl alkanones 2a–g upon treatment with LDA in Et2O at −98°C, warming to room temperature and quenching with satd aq.
NH4Cl. A mechanism involving an oxazoline-assisted ortho lithiation of the aryl group (cis to the oxazoline system) of oxiranes
1 is proposed. © 2002 Published by Elsevier Science Ltd.

Oxiranes are versatile synthetic intermediates.1 Their
reactions generally involve cleavage of the strained
oxirane ring and include a wide range of nucleophilic
ring openings and acid- and base-induced isomeriza-
tions.2 The chemistry of oxiranes under basic condi-
tions has been extensively investigated, including: (a)
�-deprotonation to give an oxiranyl anion, which, in
turn, can be captured by an electrophile, dimerize to
generate alkenediols, ring open to give an enolate or a
carbene, or undergo a C�H insertion reaction;3 and (b)
�-elimination to furnish an allylic alcohol.4 In previous
papers we have reported that oxiranes bearing a stabi-
lizing group on the oxirane ring can be easily deproto-
nated with lithium bases and resulting lithiated species
could isomerize to acyloxazolines in the absence of
external electrophiles5 or be trapped with electrophiles
yielding more functionalized oxiranes.6 Quite recently,
such an oxiranyl anion methodology has been success-
fully applied to the synthesis of highly enantioenriched
styrene oxides7 and epoxylactones.8 In connection with
such studies, we have also found that alkyl-substituted
oxazolinyloxiranes, in which no oxirane ring hydrogen
can be abstracted, are very prone to undergo �-elimina-
tion to give oxazolinyl allylic alcohols.9

In the present paper we report a novel base-mediated
isomerization reaction of oxazolinylaryl oxiranes which
begins with an oxazoline-assisted ortho lithiation.
Treatment of ethyl oxazolinyl diphenyl oxirane 1a
(Table 1), easily available from lithiated �-(1-chloro-

propyl)-4,4-dimethyl-2-oxazoline and benzophenone as
similarly reported,10 with 1.5 equiv. of LDA in Et2O at
−98°C followed by warming to room temperature
afforded a very good yield of a new compound which
was assigned the structure of 2a on the basis of spectro-
scopic data including 1H and 13C NMR, IR, GC–MS
and elemental analysis.11

On the other hand, lithiation of methyl oxirane 1b
under the same experimental conditions provided only
a small amount (about 10% yield) of ketone 2b beside

Table 1. Synthesis of oxazolinylaryl alkanones 2

Compound R R1 Yield (%)a

Eta H 85
10bb HMe

Etc Cl 95
Etd F 79
Ete Me 85

OMef 88Et
n-Prg H 85

a Isolated yield.
b The main reaction product was allylic alcohol 3.
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Chart 1.

C�N double bond of the oxazoline ring. Several
unidentified compounds formed when 1h was treated
with 1.5 equiv. of LDA. A complex mixture of several
unidentified compounds was obtained also when bis(3-
nitrophenyl)oxirane 1k was reacted with LDA.

The need for the cis arrangement of the aryl and
oxazolinyl groups for the isomerization reaction to
occur is demonstrated by the following experiment.
When (3R*,4S*)-3-oxazolin-2-yl-4-phenyl-3,4-epoxy-
heptane 1j13 was treated with LDA a diastereomeric
mixture (81% yield; E/Z ratio: 9/1) of allylic alcohols 7
formed exclusively.14 This is clear evidence that no
ortho lithiation occurs when the aryl group is trans with
respect to the oxazoline ring. A strong acceleration of
the isomerization reaction of 1 into 2 was observed
when the combination LDA/TMEDA was used. In
fact, the isomerization 1e�2e takes about 4 h to go to
completion with LDA alone, but it takes about 1 h to
be over at −40°C in the presence of TMEDA.

In conclusion, this paper reports a useful transforma-
tion of easily available oxazolinylaryl oxiranes 1 into
novel oxazolinyl substituted aryl alkanones 2, which
look susceptible of further synthetic elaboration. Work
is in progress in our laboratory for a more detailed
mechanistic elucidation of the isomerization reaction
above.
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Scheme 1.
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1H), 7.21–7.40 (m, 7H), 7.87–7.90 (m, 1H). 13C NMR
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case of 1a, the lithium cation coordinative assistance is
provided from far in a seven-membered cyclic intermedi-
ate such as 4, while a five-membered cyclic structure is
actually involved when the oxazolinyl group is directly
linked to a benzene ring.

13. The configuration to 1j (in which the oxazoline and the
n-propyl group are on the same side of the epoxide ring),
obtained as a single diastereoisomer in the reaction of
lithiated �-(1-chloropropyl)oxazoline with butyrophe-
none, was assigned by analogy to similar trisubstituted
aryl methyl oxazolinyloxiranes as reported in Ref. 6d.

14. The Z or E configuration to allylic alcohols 7 was
assigned on the basis of the vinylic protons chemical
shifts: 5.41 vs 5.87 �, respectively. If bulky substituent
groups are in fact present on the double bond gem to
aromatic rings these will adopt a twist conformation and
a shielding of vinylic protons in cis positions will occur,
as reported (Gaudemar, A. In Stereochemistry: Funda-
mentals and Methods ; Kagan, H. B., Ed; Georg Thieme
Publishers,1 Stuttgart, 1977; Vol. 1. Determination of
configurations by spectrometric methods, pp. 48–50).
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